

● 单位介绍

中核集团核工业第八研究所始建于1963年5月,是中国核工业集团有限公司下属的专用材料研究所。

全所建制有八个职能部门、三个研究室和三家主要参控股公司, 在职员工277人(包括控股、参股公司员工),其中科技人员130余人,具有高级职称和享有政府特贴专家近20人。所本部职工124人, 离退休职工318人。

- 集团在华东地区唯一科研单位
- 地处嘉定科学卫星城,科研院所聚集地
- 科创中心建设的承载区

军转民产业转型发展历程

核工业"保军转民"方针

核八所创业

起步奠基

调整扩充

提高发展

1982年第一个军转民项目

金刚石薄刀片鉴定会

净化过滤器

电子浆料

磁性材料

复合材料

金刚石薄型砂轮片

粉末冶金制品

高科技转化成果

中美上海司太立有限公司

上海宝银电子材料有限公司

上海一鸣过滤技术有限公司

荣获各项荣誉奖项

★科研成果

国家发明一等奖、二等奖、三等奖 各1项

国家科技进步二等奖6项

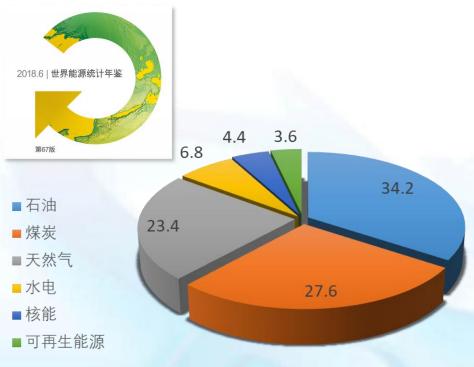
国家科技进步三等奖2项

国防科学技术奖(或省部级奖)

特等奖1项、一等奖3项、二等奖9项、三等奖46项

授权专利45项,其中国防专利34项

- 单位介绍
 - 上海市文明单位
 - 上海市花园单位
 - > ISO9000国际质量管理体系认证



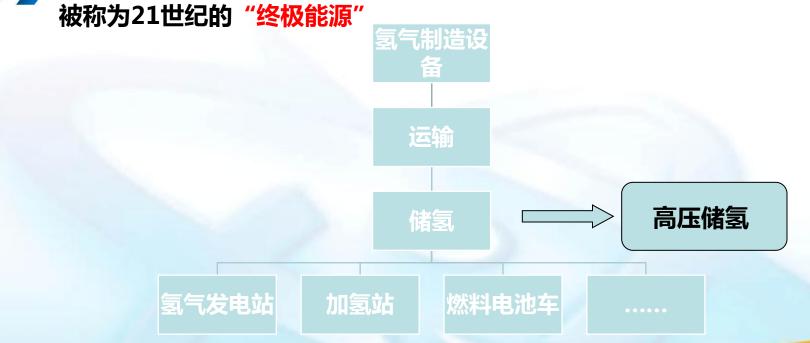
复合材料 产品介绍

Enterprise products

能源消耗比例

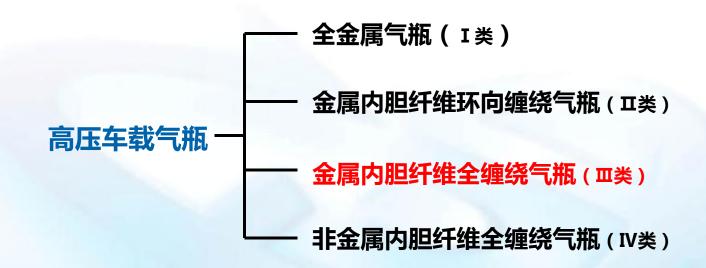
石油、煤炭及天然气属于不可再 生资源,环境污染问题严重。

水电及可再生能源受地域和季节 影响大,能量不稳定


核能经济效益高,核燃料运输方便,清洁无污染,能量密集地区适应性强。

氢能作为一种清洁高效的二次能源,具备快速可再生和零排放等特点,

2016年《中国氢能产业基础设施发展蓝皮书》


给出2020年燃料电池车数量为1万辆;

给出2030年燃料电池车达到200万辆。

2019年3月中旬,氢能源基础设施建设首次写入《政府工作报告》



复合材料研究室

在国家重点项目研究基础上,培养了经验丰富的复合材料结构设计和复合 材料树脂基体研发、专业细致的缠绕成型工艺研究和复合材料性能检测团队

同时,拥有诸多先进的树脂基体研发仪器设备、万能试验机、静压爆破 测试平台等材料性能检测设备,以及各种型号的大型多轴缠绕机、热压、模压 等复合材料专用加工成型设备

热压罐

静态热机械分析仪(TMA)

近40年的复合材料应用研究,积累了大量树脂基体、增强纤维及 其复合材料理化性能数据,建立完备的基础数据库,为复合材料应用 设计提供全面的数据支持。

- 中温固化高性能树脂基体
- 耐高温树脂基体
- 高强度高韧性树脂基体
- 玻璃纤维及其复合材料
- 碳纤维及其复合材料

结构设计

产品结构及复合材料铺层设计。

工艺设计

产品制造工艺及相关过程 工艺部件设计。

根据实际工况进行结构验 证分析,优化结构及铺层 方案。

试验验证

产品等比例或缩尺试验验证。

50L复合气瓶设计案例

技术指标要求

<i>项目</i>	参数
总重量 (kg)	≤11.0
工作温度	-20℃~65℃
工作压力(MPa)	≤30
验证压力(MPa)	≥45
爆破压力(MPa)	≥60
工作压力循环寿命(次): (0MPa~30MPa~0MPa)	≥50
外漏率(Pa•m3/s): (工作压力下的氦气漏率)	≤1×10-7

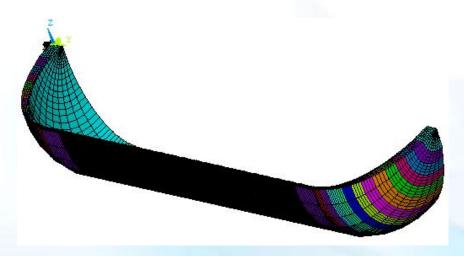
根据技术指标中重量、工作压力及爆破压力要求,结合网格化理论初步设计,确定拟采用的碳纤维。

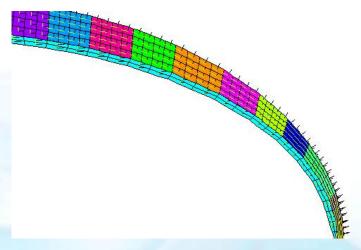
螺旋向复合材料厚度≥1.27mm

环向层复合材料厚度≥2.28mm

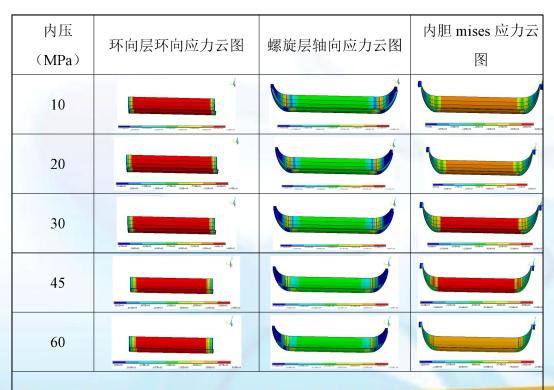
复合材料设计预判

环向层厚度(mm) 所需纤维强度(MF		复合材料重量(kg)		
外凹层厚皮 (IIIII)	別而纤维强及(IVIPa)	1:1	3:2	2:1
2.3	6148	6.16	5.44	5.07
2.4	5892	6.35	5.58	5.21
2.5	5660	6.54	5.75	5.35
2.6	5440	6.73	5.9	5.48
2.7	5238	6.92	6.05	5.62

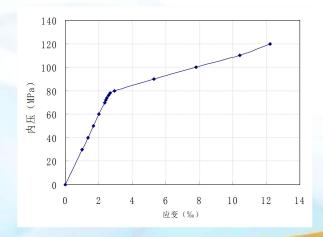

拟选材料基本力学性能检测



有限元分析校核及结构优化



复合材料气瓶ANSYS模型示意图



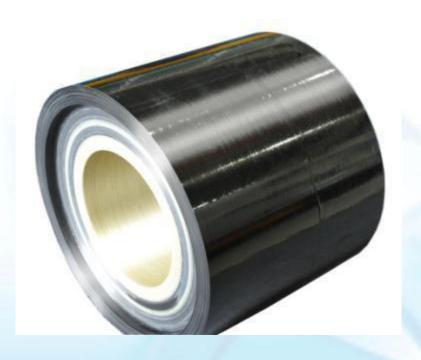
模型封头段示意图

压力容器ANSYS计算应力云图

通过有限元分析计算,设 计预打压工艺压力值,提高 其整体结构疲劳寿命。

预紧工艺后环向应变-内压曲线

项目	参数	
直径	100mm~ 500 mm (外径)	
长度	0.5m~ 4 m (总长)	
壁厚	~15 mm (筒体位置)	
工作温度	-20°C ~ 65°C	


● 耐高温防腐蚀包壳管

- 直径约8 mm (外径)
- 长度约1 m
- 采用小角度缠绕成型工艺
- 1300℃高温特殊环境长期使用

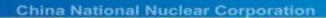
应用于核电站的反应堆内 作为燃料元件的包壳材料 具有极好的耐高温与抗腐蚀的防护性能

复合材料储能飞轮

特点

外径:100mm~900 mm

厚度:100~300 mm(径向)


高度:10~600 mm

材料性能均匀、低失衡量、多

种材料混杂缠绕成型、防径向

裂纹

高速电机增强套

特点

工艺方案:

1、直接缠绕

2、 过盈装配

厚度:2~10mm(径向)

高度:10~600 mm

材料性能均匀、低失衡量、根据

客户需求提供可靠的工艺方案

碳纤维端拾器

碳纤维主臂

内部中空的异性部件, 其具有重量轻,可设计 性强,可灵活组装添加 支臂,操作范围广,耐 磨与耐腐蚀性能强,使 用寿命长等多种优点。

A型碳纤维端拾器

重量轻,装配两根碳纤 维横杆。可以根据产品 大小调节吸盘间距,操 作起来快速方便,可替 代国外同类产品。

B型碳纤维端拾器

上料机器人端拾器采用 1根长碳纤维方管与8 根短碳纤维方管组成, 装配有吸盘。可最大化 满足生产所需,优化生 产线路。

C型碳纤维端拾器

具有重量轻,可设计性强,较为灵活等优点。可以根据产品大小调节吸盘间距,拥有高效便捷的处理能力,可以替代国外同类产品

在近40年复合材料应用研发过程中,我所已经具备专业的复合材料研发能力,并培养了高水平精细化的人才队伍,可为客户提供个性化定制服务,交付高质量的产品。讲求信用,严格遵守商务约定,对客户有效履约。

我所始终秉持"以客户为中心"的经营理念, 用心为客户服务,为客户创造价值,是我们一致的追求。

联系方式

联系人:张志海

联系电话: 39523477

电子邮件: 21056365@qq.com

合作愉快

